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In  the present paper we examine low-Prandtl-number thermal convection using a 
highly truncated modal approach. For the horizontal structure we assume a 
hexagonal planform as in Toomre Gough & Spiegel (1977) but including a vertical 
vorticity mode. The system develops a non-zero vertical vorticity component 
through a finite-amplitude instability. Following this, the system displays a Hopf 
bifurcation giving rise to periodic oscillations. The mechanism for this instability 
is associated with the growth of swirl in the azimuthal direction. We have found 
three different types of periodic solutions, possibly associated with subharmonic 
bifurcations, and their structure has been examined. 

A large part of the present work is devoted to exploring the cases of mercury and 
liquid helium - or air - as the best-known examples of low and intermediate-prandtl- 
number fluids. Results for mercury are quite satisfactory as far as frequencies and 
fluxes are concerned and they show reasonable agreement with experimental 
measurements a t  mildly supercritical Rayleigh values. On the other hand, for liquid 
helium or air agreement is poor. 

1. Introduction 
The aim of this paper is to examine some aspects of the transition to time- 

dependent flow in low-Prandtl-number thermal convection. Interest in the subject 
comes mostly from astrophysics and geophysics, where very low Prandtl-number 
values can be found, though practical applications for liquid metals and crystal 
growth have recently proved to be a new source of interest. Recent experiments in 
liquid helium and mercury have shown low-Prandtl-number thermal convection to 
provide a puzzling example of transition to chaos, with a rich bifurcation pattern 
which is only partly understood (see Behringer & Ahlers 1982 ; Walden 1983 ; Fauve 
et al. 1984a, b and references therein). A first draft of this pattern has been drawn by 
Busse and Clever by making a linear stability analysis of straight rolls in an infinite 
layer - see Busse (1978) and references therein - and the theoretical results are well 
in agreement with numerical experiments (Lipps 1976; McLaughlin & Orzag 1982; 
Sulem, Sulem & Thual 1985). They show straight rolls being destabilized a t  a 
Rayleigh number of R x 1900 by an instability of an oscillatory type, resulting in a 
wave-like distortion that is propagated along the roll with frequencies within the 
range of the thermal diffusion time. 

However, from some laboratory experiments, we may seriously question whether 
a linear stability analysis of straight rolls can explain the pattern of convection in 
mildly supercritical regimes. The answer is not clear and the present paper is a quest 
in this direction. If the container is rectangular and the aspect ratio is large the 
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answer seems to be in the affirmative (Fauve et al. 1984a). Discrepancies have been 
found mostly for small- or intermediate-aspect-ratio boxes, where the geometry is 
expected to force significant departures from two-dimensional geometry, but they 
have even been found in some experiments where the aspect ratio is large enough for 
infinite-layer behaviour to be expected. The most relevant experiments in this 
respect have been conducted by Ahlers & Behringer (1978) and Behringer & Ahlers 
(1982) in fluids of intermediate-Prandtl-number values confined in large-aspect-ratio 
cylindrical boxes. The authors could not even find any steady state a t  Rayleigh 
numbers above the critical value. 

A second set of experiments that  .are difficult to reconcile with linear theory has 
been conducted by Krishnamurti (1973). She explored convection in mercury by 
using a large-aspect-ratio rectangular box and observed the transition to time 
dependence a t  a Rayleigh number of R z 2400, higher than the value R w 1900 
predicted for the oscillatory instability. I n  addition, the frequencies measured were 
found to be much smaller than expected. To be precise, the frequencies predicated 
for the oscillatory instability scale with the thermal diffusion time, while those that 
she measured scaled with the viscous diffusion time, the ratio between both 
frequencies being comparable with the value of the Prandtl number. 

Discrepancies between theory and Krishnamurti’s experiments in mercury could 
be understood if it is assumed that the amplitudes for the oscillations a t  the onset of 
instability were below the instrumental threshold and increased with an increasing 
Rayleigh number, frequencies decreasing monotically. However one must then 
explain why the first measured oscillations display frequencies in the range of viscous 
timescale. In  our opinion this change from thermal to viscous timescales reflects a 
new balance in the master equations and, associated with it, a new instability not 
shown by straight rolls. 

Our purpose is to examine the linear and nonlinear stability of an non-straight 
structure. The most important contributions in this direction have been made by 
using the so-called amplitude equations introduced by Newel1 & Whitehead (1969) 
and significantly improved by Siggia & Zippelius (1981) by the inclusion of some 
contribution from the vertical vorticity component. With this contribution they 
reproduce with reasonable accuracy every instability described by Clever & Busse, 
(1974), but their vorticity equation only includes what we have called elsewhere 
shape instabilities (Massaguer & Mercader 1984, see also $2.2 below). These are 
instabilities that change the shape of the primary flow and, as a distinguishing 
feature, they can all grow from a straight roll. Other sources of instability may exist 
if the primary flow shows some finite curvature, as is the case in bent rolls and 
toroidal flows. 

Two examples of such flows can be found in the literature: hexagonal planforms 
(Toomre, Gough & Spiegel 1977, 1982) and cylindrical axisymmetrical flows (Jones, 
Moore & Weiss 1976), and we have chosen the former for the present paper as it can 
easily be extended, for future work, with the inclusion of more horizontal modes. The 
choice of this modal approach for a low-Prandtl-number fluid has been examined 
with care as significant differences between axisymmetrical cylindrical flows and 
hexagonal planforms have been reported by the latter authors, mostly concerning 
the existence of inertial solutions - what they called fly-wheels. However, differences 
between convection in the two-dimensional axisymmetrical cylinders and hexagonal 
planforms have been reported for primary flows with Reynolds numbers larger than 
one, a regime that will be shown to make them both unstable. Thus, our choice has 
been dictated by reasons of simplicity. 
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We shall also concentrate on instabilities with respect to linear and nonlinear 
perturbations preserving the geometry of the primary flow and we shall avoid what 
we have called above ‘shape instabilities’. This might seem to be inconsistent with 
the linear stability analysis carried out by Jones & Moore (1979) for an 
axisymmetrical flow, as they showed this flow to be unstable with respect to non- 
axisymmetrical perturbations. First, the reader should be forewarned that we do not 
expect a hexagon to remain a hexagon forever. All we attempt is to develop intuition 
about some nonlinear processes without being forced to do fully three-dimensional 
computations. Secondly, a linear stability analysis does not decide which instability 
sets in first or which grows fastest - for instance, a finite-amplitude instability might 
be present. Finally, the reader should be aware of the linear analysis of 
axisymmetrical flows not being completed, because Jones & Moore overlooked the 
possibility of an axisymmetrical flow with a non-zero vertical vorticity component 
- taking m = 0 in their equation (16) implies w, = 0 - and this is the case analogous 
to the one examined here. We shall include in our model a vertical vorticity 
component, but still retain the hexagonal geometry. As a result, the flow in every cell 
will show an azimuthal velocity component but will still display hexagonal 
symmetry. We can imagine a vortex ring with swirl distributed horizontally in such 
a way that the mean angular momentum is zero. 

This paper is, in a sense, an extension of the one-mode cellular expansion of 
Toomre et al. (1977) with the addition of a new field - the vertical vorticity 
component. Such an expansion has been used previously to explore thermal 
convection in a rotating layer by Baker & Spiegel (1975) and magnetoconvection by 
Van der Borght (1976) and Murphy & Lopez (1985, and references therein). We 
report here on an instability present in low-Prandtl-number thermal convection. I ts  
general nature is discussed in 92, where a highly truncated model displaying this 
instability is introduced. The numerical analysis is carried out in 93. A steady family 
of solutions bifurcating from the old one is examined in $4 and its stability properties 
are considered. In  $5  the modal equations are time evolved and some periodic 
solutions examined. Finally, in $ 6, some conclusions concerning the physical 
relevance of the model are discussed. 

2. Mathematical formulation of the problem 
Thermal convection will be studied in a plane-parallel domain, horizontally 

periodic, bounded by two horizontal plates and filled with a Boussinesq fluid. The 
problem will be specified by two parameters: Rayleigh number R, and Prandtl 
number c, both defined in the usual way, the former being a measure of the external 
forcing and the latter a ratio of two timescales: thermal and viscous diffusion 
times. Two more parameters specifying the horizontal structure will be introduced 
in $2.3. 

2.1. The exact equations 

In  a Boussinesq fluid the velocity field u is assumed to be solenoidal: 

v.u = 0. (2.1) 

If, in addition, the mean velocity along a direction k is zero, then v can be written as 
a sum of a poloidal plus a toroidal component 

u = V x V x (#k)+V x ($k) ,  (2.2a) 
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where k is unit vector pointing upwards along the positive z-axis and 4 and @ are two 
scalar fields related to the vertical components of the velocity and vorticity by the 
expressions 

v, =-v24 1 ,  (2.2b) 

w, = -V?$, (2.2c) 

where w = V x v is the vorticity vector, V, = (a,,a,,O) the horizontal projection of 
the grad vector, and V: the horizontal Laplacian. 

We can now write the Navier-Stokes equation for a Boussinesq fluid with no mean 
motion in terms of q5 and $. By projecting the equation by the curl (V x ) and the 
double curl (V x V x ) operators, the vertical components of both projections can be 
written as 

( g - 1  a, - vz) v ~ V ,  = - RV; T + g-1 [v x v x ( 0 .  vo)], 
( g - 1  a, - vz) @, = - g-1 [ v .  vw, - 0. vVz], 

(2.3) 

(2.4) and 

where T is the temperature field and all magnitudes have been made dimensionless. 
The units for space, time and temperature have been taken to be the thickness of the 
layer, the thermal diffusion time, and the temperature difference across the layer 
respectively. Equations (2.3) and (2.4) are complemented with the heat equation, 
written in these units as 

(at-V2)T = - v * V T .  (2.5) 

The system formed by (2.2)-(2.5) can be solved for the three scalar fields 4, $ and 
T provided that appropriate boundary conditions are imposed. We have assumed 
rigid boundary conditions for the velocity : 

(2.6) v, = a,v, = w, = 0 a t  z = 0,1,  

and perfectly conducting plates with imposed temperature at top and bottom : 

T ( z  = 0) = 1 ; T ( z  = 1) = 0. (2.7) 

For convenience we shall split each scalar field, say T ,  into its horizontal average 
and the fluctuation T’, where an overbar means horizontal average. We can 

write 

T ( x ,  Y, Z ,  t )  = w, t )  +T’(x, Y, Z ,  t), (2.8) 

with P=o. 

Now, from the horizontal average of the continuity equation (2.1), the condition 
8.0 = 0, and the imposed boundary conditions we obtain 

tJz = a, = 0. (2.9) 

4 = $ = 0 ,  (2.10) 

Also, from the average of (2.2) we obtain 

where horizontal periodicity has been assumed. 
From previous considerations it can be proved that the horizontal average of (2.3) 

and (2.4) is identically zero. This is not the case for the heat equation, the horizontal 
average of which can be written as 

a,T++,(-a,T+v,) = 0. (2.11) 
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The average of (2.3) and (2.4) being zero, they themselves provide the fluctuating 
equations though, for convenience, T in (2.3) is replaced by T‘. The equation for T’ 
can be obtained as a difference between (2.5) and (2.11) as 

(a, - V’) T’ = - V -  (0 -P) -vz a, T .  (2.12) 

Now, from (2.11) we can introduce Nusselt number N ,  

N = -aZT+-, (2.13) 

as a measurement of the heat flux. The quantity N is constant if the flow is steady. 
Otherwise, it is convenient to define the top and bottom Nusselt numbers as 

N ,  = - a Z q X  = 1 ) ;  N ,  = - a z q Z  = o), (2.14) 

such that in a steady regime N = N ,  = N, .  

2.2. On the vorticity equation 
The main difference between the present work and others using similar techniques 
lies in the vorticity equation, the structure of which deserves some comment. If 
relationship (2.2) is used, (2.4) can be written explicitly as 

(2.15) 

where 

A(# ,  $1 = v ( a , $ ) . v ( v : ~ r ) - V ( a Z $ ) . V ( V ~ $ ) + V 2 $ a , v ~ $ - V z $ a , v ~ @ .  

There are only two circumstances in which the vertical vorticity component can 
be taken-and has been taken by several authors-to be zero. First, for small 
amplitudes, for then (2.15) becomes a diffusion equation for $. Secondly, if the flow 
is assumed to be two-dimensional (i.e, dependent on only one horizontal and one 
vertical component as in the plane or axisymmetrical cases), for then the two 
Jacobians are zero and the equation becomes linear in $, accepting $ = 0 for any $ 
as a particular solution, though other solution may exist. 

It can be realized from a standard energy balance (see Appendix) that  in (2.15) 
there are two source terms, the Jacobian on the right-hand side and the term A($ ,  $). 
As will be shown below, each one of these can be associated with a different family 
of instabilities. While the Jacobian on the right-hand side acts as an external forcing, 
resulting in a continuous growth of $ from the onset of convection, the instability 
associated with the A-term requires a finite value of $. 

In  order to examine both types of instability, we can take as a primary-un- 
perturbed - flow a two-dimensional field with zero vertical vorticity, say {$o ,  $ = O>, 
and {$’, $‘> as a perturbation field. The linearized version of (2.15) then reads 

where A has been defined above. If the primary flow is a straight roll (say C$,$ = 0) 
it has been proved by Busse (1972) that the volume average (@’ A($o,  $‘)) will be zero 
and the A-term will not make any contribution to the instability - see also (A6) in 
the Appendix for a similar conclusion. Thus the only source terms are the Jacobians 
on the right-hand side. Notice that these terms are different from zero only if the 
perturbation does not preserve the two-dimensional structure of the primary flow. 
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We have called the instabilities associated with these Jacobians shape instabilities for 
they include most known shape changes - Eckhaus instability is an obvious 
exception for it is two-dimensional. If the flow is two-dimensional and the geometry 
is preserved by the perturbations, then (2.15) can be written as 

(at-aV”v;@+/1($3,q9) = 0. (2.16) 

The source term for this equation is different from zero only in those cases where # 
does not correspond to a straight roll ; therefore the flow must show some curvature 
in order to be destabilized. 

I n  order to explain the physics of this source term we shall consider here the 
axisymmetrical case and report a more general discussion in the Appendix. In 
cylindrical coordinates the azimuthal component of the velocity field v, is related 
with the vertical component of the vorticity by the expression w, = +a, (rv,). If, 
instead of (2.16), we now write the azimuthal component of the Navier-Stokes 
equation, 

vr’uti - a, vg + v .  vv, + - - a ~ ~ t l , ,  
r 

where LZv, = e,V2(v,eg) and we take the volume average of the product of 
this equation times v,, followed by a partial integration, we obtain the balance 
equation 

a-l a,(+$) + ( IV(ve eJ2) = - a-l ( “ r 2 )  ~ > (2.17) 

where, v, not being either positively or negatively defined, the right-hand side can be 
positive, acting as a source term for azimuthal velocity component - called the swirl 
in vorticity dynamics. 

The v,-equation suggests that  we can understand this instability in the following 
way. In  an axisymmetrical flow without swirl (i.e. v, = 0) any particle will circle on 
a vertical plane containing the radial direction. If a parcel of fluid is taken out of this 
plane then v, =# 0. In  a frame of reference rotating around the symmetry axis with 
angular velocity v,/r the parcel will be acted upon by a Coriolis force 2v0v,/r - the 
reader should be aware that half that  force is hinted a t  in the v .  Vv, term. For a fixed 
value of v, this force is either a stabilizing or destabilizing one depending on the sign 
of the radial velocity - i.e. depending on the parcel being in the upper or in the lower 
half of the layer. Therefore, the Coriolis forces can destabilize the swirl. Such an 
explanation might raise some doubts about the very nature of the source term in 
(2.17), for Coriolis forces do no work. Yet, as is well known, the inertial forces as a 
whole do no net work (see (A3)) and the term on the right-hand side of (2.17) 
corresponds to an energy transfer from the radial to azimuthal direction. I n  that 
respect, we call the reader’s attention to Coles’s (1965) description of the 
Taylor-Couette instability, for i t  shows the argument inverted : how a radial 
component v, can grow from an azimuthal flow. 

From (2.17) i t  is clear that the source term for the instability of swirl is to be zero 
for a flow symmetrical with respect to a plane a t  mid-height, for, with w, changing 
sign there, the contributions from the upper and lower layers cancel. It is precisely 
such a lack of asymmetry that explains why some models fail to display such 
instability. For instance, this seems to be the case in Siggia & Zippelius (1981) - the 
only source term in their equation (1  b)  is the Jacobian on the right-hand side of our 
(2.15). In  that case the symmetry was imposed by the bias of the vertical structure 
of the unperturbed roll. 
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2.3. The model equations 

In order to solve the system (2 .3) ,  (2 .4) ,  (2.11) and (2.12) we shall expand the 
fluctuating variables on a set of orthogonal functions (f i(x,  y)} with amplitude 
coefficients depending on the variables z and t. If the set of functions is a finite subset 
of a complete basis the procedure is called the Galerkin method. Its extension to the 
Boussinesq problem can be found in Gough, Spiegel & Toomre (1975) for those cases 
with zero vertical vorticity. Inclusion of a vertical vorticity component for a plane 
geometry was carried out by Baker & Spiegel (1975) in order to study convection in 
a rotating layer. Our work is based on their model, but we have concentrated on the 
non-rotating case. 

In the present paper we have followed the same path as Toomre et al. (1977) and 
reduced the expansion to only one basis function f(x, y). We are aware of Marcus's 
(1981) warnings against poor representations of the turbulent spectra, but the results 
presented in the following sections mostly concern small supercritical Rayleigh 
values and we are expecting an almost laminar regime. The one-mode expansion 
chosen for the fields can be written as 

2.', =f(.,y) W ( z , t ) ,  ( 2 . 1 8 ~ )  

% = Y) t ( Z >  t ) ,  (2.18b) 

T = p(z, t )  +f@, y) @(z, t ) ,  ( 2 . 1 8 ~ )  

where f(x, y) is taken to be an eigenfunction of the Laplacian operator Vf f = -a". 
The horizontal velocity components can then be written as 

21, = a-"(a,f a, w + a,f 51, 

vY = f a, W-a, f g). 
Iff(., y)  is to be determined completely, we must impose some boundary conditions 

and normalize its amplitude. However, for the present purpose f(x,y) can be defined 
by the three momentsf= O,? = l ,?  = 2C. The coupling coefficient C ,  together with 
the wavenumber a are parameters we need in order to specify the horizontal structure 
of the flow. Introduction of (2.18) in (2 .3) ,  (2 .4)  and (2.12) plus horizontal averaging 
of these equations multiplied previously by f ( x ,  y), gives 

(r-l a, - V2) V2W = - R a 2 B - C ~ - l (  W a, V2W + 23, WV2W + 35a, t), (2.19a) 

(u-la, -v2) t = -ca-1(Wa,g-taz w), (2 .19b)  

( 2 . 1 9 ~ )  (a, -v2) B = - w a, T - C ( S W  a, B+ ea, w), 
(2 .19d)  

where V2 = a;,-a2. In  the previous set we have included the averaged equation 
(2.11).  The boundary conditions (2.6) and (2 .7)  will be written as 

w = a,w = g = o (2 = OJ), (2.20) 

e = o  (2 = 0, I ) ,  (2 .21a)  

T(2 = 0) = 1 ; T(2 = 1) = 0. (2.21 b) 
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The Nusselt number defined in (2.13) reads 
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N = -a,T+we, (2.22) 

with its top and bottom values defined as in (2.14). 
The system (2.19) has been explored numerically in the case of 5 = 0 by Toomre 

et al. (1977). Also, Murphy & Lopez (1984), Lopez & Murphy (1984), Mercader (1985), 
and Mercader & Massaguer (1983) have examined the steady solutions of system 
(2.19) for the free-boundary case. A first look a t  time dependence can be found in 
Massaguer & Mercader (1984) and Murphy & Yannios (1985). 

The set of equations (2.19) constitutes our master system throughout the present 
paper. References to the horizontal structure will not longer be made, meaning that 
any perturbation of the basic flow will keep its horizontal geometry. Our purpose is 
to consider system (2.19) as a self-contained dynamic system. It incorporates here 
the [-equation, coupled with the whole system through a quadratic term in 6: the 
term Ci3, 6 in (2.19a). The steady solutions show a four-fold degeneracy because they 
present two sets of invariances : 

(i) skew-symmetry about the mid-plane for the fluctuating variables while the 
mean fields remain symmetrical : 

{W,[,#,a,Tj+(-w, -5, -8,a,T) for z + I - - z ;  

(ii) change in sign for the vertical vorticity, all other variables being unchanged 

{W,g,8,i3,Tj+{W, -[,8,a,T} for X+Z. 

Therefore, each solution found represents a set of four indistinguishable solutions. 

3. Stability of g = 0 solutions 
In the small-amplitude limit the system (2.19) breaks down into two uncoupled 

parts : a linear system for the variables { W, 8, T j  plus a diffusion equation for 6. Thus, 
in the small-amplitude limit any solution is attract,ed towards [ = 0. These 6 = 0 
solutions can be taken as zero-order terms for a small-amplitude expansion but, the 
right-hand side of (2.19b) being quadratic, the [-equation turns out to be a diffusion 
equation a t  each order in powers of the amplitude, and no 5 + 0 solution can be found. 
From inspection of (2.19b) it  is clear that a 6 + 0 solution is not possible unless W is 
order one. Therefore a [ =+ 0 solution must grow as a bifurcation from a finite-W 
solution. 

The first step before making a stability analysis is to compute solutions of (2.19) with 
6 = 0. This system has been studied numerically by Toomre et al. (1977) and their 
solutions have been found to be steady across the whole range of values explored. 
Therefore we have assumed the primary flow {W78,p} to be a solution of 

v2v2w = Ra2 ~ + C U - ~ ( W ~ , V ~ W W ~ ~ ,  WV2 W), (3.1 a )  

v20 = w a , ~ + c ( 2 w a , 8 + 8 a , w ) ,  (3.1 6) 

N = - a , ~ + w o ,  ( 3 . 1 ~ )  

where, the system being steady, we have used the integrated form (2.22) for the heat 
equation (2.19d). N is now a constant and the system has been reduced, as in Toomre 
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et al. (1977), by eliminating aZT and rescaling 19 and R by a factor N ,  with the Nusselt 
number being computed afterwards from the expression 

The linear perturbation of the primary flow is very simple, as the coupling between 
the (-equation and the whole system depends on a term that is quadratic in (. The 
linear stability analysis breaks the problem down into two parts in such a way that 
the stability for 6 can be considered independently of that for other variables. Thus, 
the stability for ( keeps the form (2.196), W being there a solution of (3.1) with the 
same parameters C and a. Equation (2.19b) now becomes a linear problem with time- 
independent coefficients. Assuming an exponential growth rate it can be reduced to 
an eigenvalue problem. For convenience we have made the following change of 
variable : 

[ ( x ,  t )  = h(z)  exp [ At+- 2?[ WdZ], 

and (2.19b) can be written as 

with 

[e:..(Y-$)]h = 0, 

Y=-aa,w- a 2 +  - . 
2a 3c [ (31 

The boundary conditions are 

h = O  a t z = 0 , 1 .  

It is now obvious that the problem is self-adjoint, h must be real, and the states 
of marginal stability can be found by solving (3.2) with h = 0. If the velocity field is 
normalized as W = e W ,  with e defined as the maximum value of W, and we take 
Re = Cs/a as Reynolds number for the primary flow, (3.2) for the marginal state can 
be written as 

a:, h+ y h  = 0, (3.3a) 

with y = -a-2+%Rea, W-(+Re)* W (3.36) 

and h = O  a t z = 0 , 1 .  

Equation ( 3 . 3 ~ )  is of the Helmholtz type and its properties are well known in the 
literature. One necessary requirement for a non-trivial solution is that y be positive 
somewhere in the z = 0 , l  interval, but, by inspection of (3.36) we can conclude that 
y is not positive if Re is much larger or smaller than one, and a is order one or smaller. 
Then, for y to be positive a t  some point, Re must be order one. 

3.1. Numerical analysis 
System (3.1) has been solved numerically by using a second-order finite-difference 
scheme together with a Newton-Raphson iteration technique. A uniformly spaced 
grid was used with the number of points ranging from 51 to 101. I n  the range of 
parameters explored the solutions were found to be smooth enough, and the 
boundary layers reasonably thick, to  solve the equations without using mesh- 
stretching. We have solved (3.1) for each set of R, C ,  a and a values and the W-field 
obtained has been used to evaluate the coefficients in (3.2). The eigenvalue problem 
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(3.2) was then solved by again using a second-order finite-difference scheme. Finally, 
the eigenfunction 6 was computed using a standard quadrature formula. 

As default values for a and C we have taken a = 3.11 7 and C = l/d6 corresponding, 
respectively, to the critical wavenumber a, of the linear problem and the coupling 
constant for hexagons. In  figure 1 we have plotted a W-solution for (3.1) at  the 
bifurcation point R, = 3848, (T = 0.025 along with the function y and the 
eigenfunction 6. For these boundary conditions the function y must show at least two 
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zeros, as shown in the figure, since y must be positive somewhere on the interval and 
since the boundary conditions W = a, W = 0 imply a negative value for y a t  both its 
ends. 

The main concern of this work is the analysis of the asymptotic limit a+O. In  
figure 2 we have plotted the Rayleigh R, and Reynolds Re number against Prandtl 
number for the state of marginal stability of = 0 steady solutions. Results have 
been plotted for different C-values but we have taken as abscissa the ratio a/C to 
show that all results fit on the same curve, with the implication that the C-term in 
( 2 . 1 9 ~ ) - i . e  the only one dependent on C but not on Cla-does not make any 
significant contribution to this instability. In  the small-Prandtl-number limit these 
curves of marginal stability asymptote to R = 3650 and Re = 20.87 for the critical 
wavenumber. The limit is reached near the a /C  = 0.1 value. Mercury, with a = 
0.025, fits the limit, but neither air not liquid helium (a z 0.7) do. The existence of 
such an asymptotic limit is consistent with the results obtained by Mercader & 
Massaguer (1983) for free boundary conditions but not with those of Murphy & Lopez 
(1984), for they propose the asymptotic law R - lo3 CT~.~. In support of our results we 
present a small-amplitude analysis as in Malkus & Veronis (1958) or Schluter, Lortz 
& Busse (1965) - see also Gough et al. (1975). At second order in amplitude they 
obtain 

e = [?I, 
where, in the limit of small cr, R, = R, Q2C2 a-' with Q being a constant dependent 
on the wavenumber and boundary conditions. Thus, the Reynolds number can be 
written as 

(3.4) 

In  addition, in this limit W = W,, + Re W l  + O ( a  Re) from which y = y(z ;  Re,a) and y 
becomes independent of a, as can be seen from its definition (3.3b). The eigenvalue 
in (3.3) with fixed a is now the Reynolds number Re. In  consequence, the asymptotic 
limit for Re depends only on the wavenumber. This asymptotic behaviour for Re 
might be inferred from the results displayed by Murphy & Lopez (1984) in their figure 
5, though, strictly speaking, they are not defining a bifurcation. From that result and 
(3.4) we can conclude that the Rayleigh number for the bifurcation R, is independent 
of a, as found numerically. How the marginal state depends on the wavenumber will 
be shown in figure 6, but we can we can now state that the minimum value for the 
Rayleigh number has been found to be a t  R, = 3293, corresponding to  the 
wavenumber a = 2.25 - smaller than the critical one. 

4. Nonlinear steady solutions 
In  the previous section we found the bifurcation to 5 + 0 to be non-oscillatory. The 

next logical step is to search for steady solutions to the complete system. Therefore 
we have solved (2.19) numerically by using the technique outlined a t  the beginning 
of $3.1.  In  figure 3 we have plotted two sets of fields corresponding to the cases with 
and without vertical vorticity, respectively. We have chosen the values R = 8000, 
a = 0.025 and a = 3.117 for these solutions. Their Reynolds numbers are, 
respectively, Re = 25.90 and Re = 44.96, to be compared with the asymptotic limit 
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FIGURE 3. Two steady solutions a t  R = 8000, a = 3.117, u = 0.025 for the cases (a )  E = 0 and ( b )  
6 += 0. They are only slightly nonlineg, as shown by their Nusselt numbers being N = 1.15 and 
N = 1.04, respectively. In both cases T (. . . . . .) is almost linear, but W and 0 (- . - lines respectively) 
have been significantly distorted by the presence of a 6 =+ 0 component, as can be seen by 
comparing (a) and ( b ) .  To compare with W ,  6 has been scaled by a factor a-see definition of 
E ,  below. 

Depth, z 

Re = 20.87. The relative contribution of the [-component to the flow can be 
measured by the kinetic-energy fraction 

where 

is the total kinetic energy. For the case presented in figure 3 ( b )  we have obtained the 
value q = 0.72, showing a very large contribution to the flow by the 5-mode, which 
results in a significant distortion of the W -  and 6-fields. 

In order to describe the bifurcation we have plotted Nusselt number versus 
Rayleigh number for mercury and liquid helium in figures 4 and 5 .  In  both cases the 
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FIGURE 4. Nusselt number N versus Rayleigh R for a set of solutions with = 0.025, a = 3.117. 
Each line is labelled with .&‘ = 0 or .&‘ $; 0 depending on the type of solution represented. On top of 
the  figure we have displayed the  positions of the points R,, R, and R, - see text. For clarity we have 
plotted a cross on the Hopf bifurcation. The values for these points are R, = 2940, R, = 3117, 
R, = 3848 and R, = 1708. 
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FIGURE 5. As figure 4 but  for c = 0.78, and now R, = 45134, R, = 1.2 x lo5 R, = 57377. It can be 
observed that  the relative positions of R, and R, are now inverted and the Hopf bifurcation does 
not take place on the metastable section of the new branch. 

bifurcation a t  R, was found to be subcritical, giving rise to a finite-amplitude 
instability. The points where the instability can be triggered have been labelled 
R, - we shall call these points ‘nose points ’. In  both cases the new family of solutions 
is less efficient in transporting heat than the old one, as can be seen from the Nusselt 
numbers being smaller almost everywhere. If figures 4 and 5 are compared, it can be 
seen that the slope of the new branch decreases with u, with the implication that the 
difference in heat transport between the 6 = 0 and E $. 0 solutions is significant for 
low u but negligible for intermediate values. 

There is an additional point to  be remarked on in figures 4 and 5. In both cases the 

I 3 FLU 189 
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FIGURE 6. Rayleigh numbers R, and R, for u = 0.025 as a function of the wavenumber a.  We have 
included for comparison the first and second transitions to time dependence reported by 
Krishnamurti (1973), displayed on the axis as R, and R,, because no information exists about 
wavenumbers. We have also included Clever & Busse’s (1974) results on the oscillatory instability 
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FIGURE 7. Rayleigh number R versus Prandtl number (r for several transitions. We have plotted 
the results for the critical wavenumber a = 3.117, not for the wavenumber corresponding to  the 
minimum R-value. We display the values R,(O), R,( +), and R , ( A )  together with the bifurcation 
to the oscillatory instability R,,,(*) found by Clever & Busse (1974). Dotted and dashed lines 
correspond to different transitions found experimentally - see Krishnamurti (1973) figure 4. Rc 
means critical Rayleigh number. 

bifurcations appear to be one-sided, but they are not. The emergent branch does not 
cross the bifurcation point, for it doubles back. This is a consequence of the E+- 
symmetry discussed in $2.3 for there is no difference between the Nusselt numbers 
associated with each family of solutions. 

In figure 6 we have plotted the Rayleigh numbers R, and R, for the case of 
mercury, together with Clever & Busse’s (1974) results for the oscillatory instability 
and Krishnamurti’s (1973) measurements for the first and second transitions to time 
dependence. The minimum of both Rayleigh numbers is for R, and it is shown to be 
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a t  R = 2650, a = 2.8, in between the transitions a t  R, = 2400 and R, = 3150 reported 
by Krishnamurti. I n  figure 7 we have shown the same Rayleigh numbers R, and 
R, as in the previous figure but this time for the critical wavenumber a,, and 
plotted versus the Prandtl number. We have chosen as a frame a section of 
Krishnamurti’s (1973) figure 4, placing our results on top of it. We should realize in 
looking at  this figure that the Rayleigh numbers displayed for the transitions do not 
correspond to their minimum values. Therefore, the agreement is fairly good for low- 
Prandtl-number fluids and discrepancies increase with (r. The transitions we have 
found for liquid helium and air are much too distant from any of the reported 
transitions to trust the model there. For the record, we report the values R, = 57 377 
and R, = 45 134 for = 0.78. 

4.1. Stability of steady solutions 

The next step is to examine the stability of the steady solutions. Thus, we have 
carried out a linear stability analysis of system (2.19) in the neighbourhood of a 
6 + 0 steady solution. Consistent with our purposes, we have perturbed this system, 
keeping for parameters a and C the same values in the perturbed equations as in the 
unperturbed ones. 

The spectrum of the linear operator cannot be easily classified, since real and 
complex eigenvalues are mixed in some regions of parameter space. Therefore, we 
have followed a standard procedure in order to  solve the problem - eigenvalues and 
eigenfunctions have been split into their real and imaginary parts, with the whole 
system being reduced to a real-valued ordinary differential equation of order twenty. 
The system is too lengthy to be displayed here. It can be found in Mercader (1985). 
The numerical results have been obtained by using the BODEL macrocompiler 
developed by E. Graham, which solves a system of first-order ordinary differential 
equations using second-order-accurate finite-difference schemes. The resulting 
eigenvalue problem is treated as a nonlinear algebraic system with the unknowns 
being both the eigenvalue and the eigenvector, and the system is solved iteratively 
by using a Newton-Raphson technique. The number of mesh points taken was 101, 
though only a few eigenvalues and eigenvectors were computed for each set of 
parameters. 

The stability problem has been worked on for mercury and liquid helium and the 
results have been included in figures 4 and 5.  There we show the three points: R,, 
R, and R,; from the first bifurcation point R, there emerge two unstable branches, 
with the spectrum for the new branch being a mixture of real and complex 
eigenvalues. At nose point R, there is a change in stability and each solution becomes 
stable. Again, a t  value R,, there is a bifurcation, this time with a complex eigenvalue 
crossing the imaginary axis. This is a Hopf bifurcation with angular frequencies 
w = 0.55 a t  R, = 3117 for mercury, and w = 130 a t  R, = 1.2 x lo5 for liquid helium. 
The corresponding periods in thermal units, t = 2x10, are t = 11.4 and t = 0.048, 
respectively. In  a search for completeness, we have included R, in figure 7 discussed 
above. 

5. Time-dependent solutions 
System (2.19) has been time marched in the range of parameters where the analysis 

of stability made in the previous section announces the existence of non-steady 
solutions. Since we have concentrated on low-Prandtl-number fluids we can expect, 
from inspection, the presence of two timescales. In  order to elucidate this point, we 

13-2 
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have rescaled the variables as @ = W / u ,  [= EJu, 8 = 0/u on the assumption that 
the Reynolds number stays near its critical value. For consistency with the scaling 
we must also change the timescale from thermal to viscous as a, = u-la,. Equation 
(2.7) can now be written a t  leading order in u as 

(t17-V2)V21@ = -Ra28+C[l@V2a, m + 2  a,l@V21@+3[i3z[], (5 . la)  

(5.1 b)  

0 = W+v", (5.1 c )  

where (2.19d) has been integrated at leading order to Zzp = - 1 .  This zero-order limit 
remains valid while both the variables and the a,-derivatives remain of order one. 
When either or both of these conditions break down, (5.1) becomes a singular limit 
of (2.7), thus entering the fast limit. The fast limit of ( 2 . 7 )  can be easily obtained by 
assuming the variables W ,  [ and 0 to be order one and again taking the thermal 
timescale a, = O(1) for the time derivatives. At leading order in u the new system is 
identical with (2.19) but without the source term Ra20 and, eventually, without the 
boundary-layer terms uV2 in (2.19a, b ) .  Therefore, we must expect the system to 
collapse towards the null solution but, this state being unstable for the full system, 
the amplitudes must increase and the slow limit (5.1) is again reached. This is a 
plausible result and is confirmed by our numerical results, so we have avoided the 
awkward problem of doing an asymptotic expansion with boundary layers in both 
space and time. We may then expect two different types of solution: 

(i) the Reynolds number of the primary flow stays close to its critical value for the 
onset of oscillations and (5.1) remains valid throughout the time period; 

(ii) the Reynolds number grows a t  values that are larger than critical, and the 
system enters a limit cycle. 
Both types of solution can be easily identified. In  the former the condition a, T = - 1 ,  
implicit in ( 5 .  l ) ,  implies a small convective transport throughout the time period (i.e. 
N-1 NN 0) ,  while in the latter we can expect large oscillations in flux. 

5.1. The numerical scheme 
System (2.19) has been broken down into a set of first-order partial differential 
equations as 

i = ( l ,  ... ) k); j = ( k + l ,  ...) N ) ;  Z=(l ,  ... N ) ,  1 a,Xi = A, iazXj+Ft(Xl . . .X , ) ,  
0 = BjLa ,x ,+Cj lX , ,  

where {A,,}, {B,,} and {Cj l }  are constant matrices, k = 4 and N = 10. Writing a system 
of partial differential equations as formed by equations with and without time 
derivatives is a formal way of treating each equation with an identical numerical 
scheme. The preference for breaking the system down into first-order instead of 
second-order equations has been dictated by the simplicity of the use of the BODEL 
macrocompiler developed by E. Graham. This is a code that generates a box-type 
implicit scheme - see, for instance, Telionis (1981) and references therein. Time and 
space derivatives - all of which are first order - are computed as a function of four 
grid points on the mesh, as 
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where subindices i a n d j  stand for space and time, respectively, in the usual way. 
Therefore, the scheme is implicit with spatial derivatives in each mesh being centred 
in space but advanced in time. Time derivatives are centred in space and time. If, as 
usual, the diffusion equation is taken for a test, the scheme is found to be consistent 
and stable. It has been taken as advanced in time to prevent spurious oscillations, 
so we may expect any oscillation to be of physical origin and possibly slightly 
damped. This scheme has been proved to be remarkably stable but highly sensitive 
to the choice of the time step, partly because of the stiffness of the system. I n  fact, 
the most important problem has arisen from the existence of nearby solutions, with 
the system jumping from one to  the next or, even, from the proximity of a 
homoclinical orbit. The problem has always been solved by reducing the time step. 
It is important to report here that sometimes a reduction in time step forced a 
spurious periodic orbit to collapse towards a steady solution. 

As criteria for choosing the number of mesh points and the time interval we have 
used the errors in the periods. We have assumed that the choice was correct if by 
halving the time step or the mesh interval the period was not changed by more than 
a few percent, though in the more stiff systems we have been stricter. As an 
additional test, we have checked the nonlinear frequencies of periodic orbits 
emerging from a Hopf bifurcation against the linear frequencies, the latter computed 
using a different code and a different technique (see the previous section). The 
number of mesh points required proved not to be crucial in the domain explored, and 
i t  has been taken to be 51. On the other hand, the time interval was found to be 
critical. As a rule of thumb, we needed two or three hundred steps per period but, in 
some cases, more than two thousand were required. The CPU time for each step 
ranged from 10-20 s on a Vax-750. 

5.2. Results 
System (2.19) has been time marched in those regions where no steady solution has 
been found to be stable or where finite-amplitude instabilities could be expected. The 
location of these regions can be easily inferred from figures 4 and 5. 

Convection in mercury 
A conspicuous example of the solutions computed is the case R = 3550, u = 0.025, 

a = 3.117 shown in figure 8. Here we have plotted their time sequences for the 
Reynolds numbers R e  = C W / u  and Re, = CiJcr evaluated a t  the centre of the layer 
( z  = 0.5) together with the Nusselt number a t  the top N,.  I n  order to help with the 
presentation we have not plotted the transients, and the periodic oscillations have 
been cloned artificially several times. The solution displayed is a prototype of what 
we have called type (ii) above. Here i t  is very easy to identify the two timescales 
discussed above. A full period takes t = 136.8 thermal time units, half that time being 
devoted to an exponential growth of 6,  whose value changes by a factor of four while 
W remains almost constant - the amplitude of W only changes by 20%. Suddenly 
the amplitudes for W and 6 fall, taking a few thermal units for the whole excursion 
and the cycle starts again, this time with the sign of W reversed. Thus, we can 
idealize the cycle as follows: W takes its steady value for a few viscous time units 
(7 = 1.7) with 6 growing exponentially as it corresponds to W being linearly unstable. 
I n  this way the primary flow becomes severely distorted and W decays towards the 
null solution in a few thermal units because Wand 8 are brought out of phase and the 
source term (v,T’) decays to zero. Since the null solution is unstable, the fields are 
forced to grow again. This time they grow towards their mirror-symmetrical 
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FIGURE 8. Time sequences corresponding to the case R = 3550, CT = 0.025, a = 3.117 for the 
magnitudes Re = CW/rr and Re, = G [ / a  evaluated at 2 = 0.5. N is the Nusselt number evaluated 
a t  the top layer z = 1 .  We have not displayed the Nusselt number a t  the bottom layer z = 0, 
because it shows an identical time sequence to N but shifted half a period. The period is t = 136.8 
in thermal units and the mean flux is N = 1.04. 

solution - see 32.4 - and the second half-cycle starts again. This jumping from one 
solution to the mirror-symmetrical one explains why the values for W and 5 a t  
z = 0.5 cannot change in magnitude, even if W changes sign as shown by Re and 
Re, in figure 8. It also explains the result, not displayed in the figure, that the time 
dependence for the Nusselt numbers on the top N ,  and bottom N ,  is exactly equal, 
although shifted half a period : the roles of z = 0 and x = 1 are exchanged once each 
half-period each time the fields jump from one solution to their mirror-symmetrical 
one. Such cyclical behaviour reminds us of an experiment described by Fauve et al. 
(19846) for convection in mercury. Their container was cylindrical and the aspect 
ratio intermediate (r = 3). The rolls - three in number - were aligned by a magnetic 
field and the pictures - see their figure 3 - show a periodic rotation of the rolls around 
the vertical axis, always in the same direction, with a subsequent disruption of the 
whole structure. Next, the rolls were rebuilt with a reversed velocity and the cycle 
started again. We understand these rotations as a periodic growing of the vertical 
vorticity of the flow in the same way as happens in our case. 

The solution presented above is a very peculiar example of a family of full-cycle 
solutions, ‘full’ meaning that W makes a full excursion from positive to negative 
values. A more genuine example of this family of solutions has been displayed in 
figure 9. It corresponds to R = 6000, other parameters being kept a t  the same values 
as in the previous case. The two-time structure is now less clear, but the stiffness of 
the system is still apparent and is reflected in the sensitivity of the frequencies to the 
time step. In  order to compute this solution, 500 steps per period were necessary as 
a minimum requirement for a 1 YO accuracy in the period, to  be compared with 2500 
steps for the R = 3550 case. The curves are now smoother and the time dependence 
for the Nusselt number is clearly different in the two half-periods. As the solution 
jumps in each period from one steady solution to its mirror-symmetrical one, the 
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FIGURE 9. As figure 8. but for the case R = 6000, u = 0.025, a = 3.117. The period is t = 3.95 
and the Nusselt number N = 1.21. 
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FIGURE 10. Fourier spectra for the time sequences displayed in figure 9 without the continuous 
component. The spectra for Re and Re, show only odd or even components, respectively, and other 
components are negligible. Both components are mixed in the spectrum for N ,  giving rise to a 
double sequence characteristic of subharmonic bifurcations. 

differences between both half-periods reflect the spatial asymmetry of these steady 
solutions. One of the most persistent signatures of this family of solutions is that W 
shows a period double that o f t .  This result can be seen clearly in the spectra shown 
in figure 10, where we have plotted Fourier spectra for W ,  6 and N ,  in which, seeking 
for simplicity, we have not included the continuum component. The first two 
variables show monotonically decreasing sequences, respectively, of odd and even 
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FIGURE 12. Upper half of an Re versus Re, phase - map projection for the sequences displayed in 
figures 8 and 11 - solid and dot-dashed lines, respectively. The orbits correspond to the z = 0.5 
value for Re and Re,. The presence of a saddle point produces an abrupt change in the direction 
of the trajectories at  the lower right and left corners of both orbits. Every solution computed in 
the range of Rayleigh- number values between to these two orbits decayed towards a 6 = 0 steady 
solution. We have also included in the figure the three steady solutions corresponding to the 
Rayleigh number of the solid-line orbit: saddle points ( x  ), stable nodal points (0) and unstable 
foci(*). 

components, both signals being mixed in the Nusselt number where they give rise to 
a composite signal. I n  figure 10 (c) we have displayed the spectrum for N ,  showing 
this double-sequence spectrum. At first sight figure 10 (c) suggests a subharmonic 
bifurcation, but this might not be the case since odd components continuously grow 
from the birth of the full-cycle family of solutions. The first full-cycle solution 
has been found a t  R = 3550, between R, and R,, and the family survived until 
R = 5 x lo4, the maximum value of the Rayleigh number explored. 
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The full-cycle family of solutions does not emerge from the Hopf bifurcation shown 
in $4.1. This bifurcation has been found at  R, = 3117 and no solution of the present 
type emerged there. In  figure 11 we have plotted the solution obtained a t  R = 3290, 
corresponding to the family that we have obtained a t  the bifurcation. It is clearly of 
type (i) (see definition above) as the Nusselt number remains very close to one and 
Re does not change sign with each cycle. We shall call them halj-cycle solutions, as 
they do not jump from a steady solution to  its mirror-symmetrical one. The clearest 
signature for these solutions is that W ,  f and N ,  oscillate with the same frequencies 
and phases. The whole family dies out near R = 3300, where the system is attracted 
towards a f = 0 steady stable solution. In  order to understand this behaviour we 
must recall that the half-cycle orbits emerge from a bifurcation on a branch f =+ 0,  
while f = 0 solutions are still stable, as can be seen in figure 4. Hence, if the 
trajectories come close enough to the stable, steady solution, the system enters a 
homoclinical orbit and the representative point is channelled towards the steady 
stable solution. 

The proximity of a saddle point can be appreciated from figure 12, where we have 
superimposed two Re versus Re, projections of the phase map corresponding to the 
solutions R = 3290 and R = 3550, whose time sequences have been plotted in figures 
11 and 8, in which, seeking for simplicity, we show only the upper half of the map, 
the lower one being symmetrical. Both periodic orbits present an abrupt change in 
the directions of their trajectories, presumably induced by the proximity of the 
steady solution, as can be seen in the figure. I n  addition, each solution computed in 
the range of Rayleigh values delimited by the cases displayed in the figure has been 
attracted by the saddle point and caught by the steady stable solution. No periodic 
orbit has been found in this range of parameters. Whenever our code produced a 
periodic solution in this range, which happened very often, by halving the time step 
we get the orbit attracted towards the f = 0 steady solution. Thus, it seems that the 
transition between half-cycle and full-cycle solutions runs through some steady 
states and emerges as a reconnection of two half-cycle orbits into a full-cycle one. 
How they proceed is not clear to us, but whatever else it may be, this family of 
periodic solutions emerges with a finite amplitude. We now bring the reader’s 
attention to the results on thermohaline convection by Huppert & Moore (1976), as 
they found a similar behaviour. Their periodic solutions show a spectrum like the one 
shown in figure 10, next to a gap with no periodic solutions. In  their case, some 
aperiodic solutions were present in the neighbourhood. 

In  figure 13 we have plotted the frequencies obtained for periodic orbits as a 
function of the Rayleigh number. In a search for completeness we have also included 
the frequencies from the linear stability problem examined in $4. From this figure, 
together with figure 4, we get the following summary for convection in mercury: 

(i) In  the range R, < R < R,, with R, = 2940, there exists only one (non-trivial) 
solution. It is steady, stable and f = 0. 

(ii) I n  2940 < R < R,, with R, = 3117, there exist three steady solutions. Two of 
these are stable, one f = 0 and the other f +  0, the third one with f +  0 being 
unstable. 

(iii) At R, = 3117 the system shows a Hopf bifurcation, I n  the R, < R < 3300 
range we have found three steady solutions plus one half-cycle periodic solution. 
Only one of the steady solutions is stable - that with f = 0. As for the periodic orbit, 
it  can be seen in figure 13 that the frequencies in the linear problem increase with R 
while the frequencies in the periodic motions decrease as the orbit is attracted by the 
steady solution. 
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FIGURE 13. Frequencies versus Rayleigh number for = 0.025, a = 3.117 and two different 
families of solutions, half-cycle ( x ) and full-cycle (*), together with the angular frequencies of the 
linear eigenvalue problem (+). In  the lower right corner we have enlarged a section of the figure 
delimited by R = 3000 to 4000. The Rayleigh-number values have now been plotted on a linear 
scale instead of the log plot for the main figure. The frequency axis is logarithmic in both cases, now 
magnified. A double line in the enlarged Rayleigh axis delimits the range 3300 < R < 3550 where 
we have not found any periodic solution. The symbols R,, R, are defined in the. text. 

(iv) In the 3300 < R < 3550 range there exist three steady solutions, but only one 
of these is stable - that with 6 = 0. No periodic solution could be found in this 
range. 

(v) At R = 3550 we have found the first full-cycle solution. It is born with finite 
amplitude and it is not clear if it  is associated with any bifurcation - for instance, as 
a reconnection of two half-cycle unstable solutions. In the 3550 < R < R, range, 
with R, = 3848, the situation is similar to that in (iii) but now the periodic solution 
is full-cycle. At R = R, there is the bifurcation described in section 3.1. 

(vi) In the 3848 < R range we have found only two unstable steady solutions plus 
one full-cycle solution. The limit of our exploration was R = 5 x lo4. 

We have compared the frequencies obtained for our solutions with Krishnamurti’s 
(1973) measurements in the R = 2400 to 3600 range. There are several points of 
coincidence. First, the periods she measured are in the range t = 100, t = 60, in 
thermal units. This is consistent with the value for our maximum period t = 136.8 for 
R = 3550 if we agree that in measuring the periods for the Nusselt number she 
measured the periods for the first overtone, not for the fundamental one, as 
suggested by figures 8 and 9. Secondly, she found that a t  R = 3150 the spectrum 
suddenly became much broader, showing a large number of higher frequencies, from 
which she could discriminate from the noise components ranging between the periods 
oft = 100 and t = 1. This is consistent with our results, as the time sequences we have 
obtained a t  R = 3550 show a very broad spectrum, its amplitudes decaying very 
slowly with increasing frequencies, in clear contrast with the spectra that we have 
obtained for smaller Rayleigh values. 

As a final step we have examined the efficiency of the heat transport and in figure 
14 we have plotted the time average of the Nusselt number in the periodic regime as 
a function of the Rayleigh number. For comparison we have included the Nusselt 
number for the steady branch displayed in figure 4, along with experimental results 
from Rossby (1969) and Krishnamurti (1973). For this figure we have used a 
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FIGURE 14. Nusselt number versus Rayleigh number for CT = 0.025, a = 3.117. The same symbols 
as in figure 13. We have included experimental results from Krishnamurti (1973) ( x ) and from 
Rossby (1969) ([I], A, O), the latter ordered as a sequence of decreasing aspect ratios. The dotted 
and dot-dashed lines are the solid lines of figure 4 in a log-log plot. We have enlarged a section of 
the figure in the lower right corner using the same criteria as in figure 13. 

logarithmic scale for fluxes in order to magnify the differences between theory and 
experiments as they involve very small Nusselt numbers. It comes as a surprise to 
realize that the time-dependent regime is far more efficient in transporting heat than 
the steady one. This result is a consequence of both W and 0 showing the appropriate 
phasing in their oscillations. As can be seen, the agreement between theory and 
experiment is almost perfect for intermediate Rayleigh numbers R > lo4 and 
differences mostly involve Rayleigh numbers in the metastable region. Nevertheless, 
we must observe that the largest Nusselt values correspond to experiments with 
intermediate-aspect-ratio boxes, and the smallest ones to larger boxes. So, it might 
be that the agreement or disagreement has to be associated with the aspect ratio of 
the box, not with the range of Rayleigh numbers, but the question cannot yet be 
answered. Also, we can appreciate from the figure that the averaged flux decreases 
with R for the half-cycle solutions. We have no explanation for such an unexpected 
result, but we suggest a look a t  the three leftmost squares plotted in figure 14. Do 
they represent a subcritical branch or do they show a decrease in flux followed by a 
sudden jump, as is the case in the present results? 

Convection in liquid helium and air 
As pointed out before, in the cases of liquid helium and air the bifurcations take 

place a t  Rayleigh values where no transitions have been reported or where they are 
expected to be masked by previous bifurcations. However, they are illustrative of the 
behaviour of the system because, in contrast to the case of mercury, the transition 
from half-cycle solutions to full-cycle solutions does not take place in the presence of 
a steady attractor. Half- and full-cycle solutions show similar behaviour in helium to 
that in mercury. The half-cycle family bifurcates a t  R, = 1.2 x lo5 from a standard 
Hopf bifurcation. We have not plotted any set of time sequences for these solutions 
as they look very similar to  the ones shown for mercury. The new factor is the 
presence of a new family of solutions which we shall call double-loop because of their 
shape in the phase map. One of these solutions, corresponding to R = 2 x lo5, has 
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FIGURE 15. As figure 8 but showing double-loop solution at R = 2 x lo', cr = 0.78, a = 3.117.'The 
period is T = 0.089 and the mean Nusselt number N = 5.07. As in figure 11, every variable shows 
the same period. 
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FIGURE 16. Frequencies versus Rayleigh number for (r = 0.78, a = 3.117. Symbols are the same as 
in figure 13 with the inclusion of (0) for a double-loop solution. Frequencies jump discontinuously 
from w = 136 to w = 69.8 and w = 40. 

been displayed in figure 15. It looks like the first stage in a subharmonic bifurcation 
with period being doubled. However, we should mention that the periodicity of this 
solution could be questioned as it takes a long time to enter a periodic orbit and we 
have not halved steps enough times to be completely confident. Since we had taken 
more than 3000 steps per period, we stopped halving because, in our opinion, we were 
close t o  using the brute-force method. 

I n  figure 16 we have plotted the frequencies as a function of the Rayleigh number. 
Linear and nonlinear frequencies are coincident a t  the bifurcation, as expected, and 
they both increase with Rayleigh-number values, thus making a clear difference to 
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FIGURE 17. Nusselt number versus Rayleigh number for cr = 0.78, a = 3.117. The same symbols as 
in figure 16. The dotted and dot-dashed lines correspond to the solid lines in figure 5 .  The presence 
of two different laws (slopes N versus R ) ,  corresponding to two different families of solutions, can 
be noticed in the figure. 

the case of mercury. Suddenly, these half-cycle solutions jump to a double-loop 
solution - we have computed only one example - with frequencies being halved. 
Frequencies then jump again, this time to a full-cycle solution. This jumping looks 
clearly like a subharmonic bifurcation since frequencies are halved each time and this 
might be taken as an indication of chaotic behaviour (Gollub 1980). However, our 
code was not well suited to a search for quasi-periodic or chaotic solutions and no 
systematic exploration has yet been done. 

Finally, in figure 17 we have plotted the time-averaged Nusselt numbers as a 
function of Rayleigh number. There is a significant difference with respect to the case 
of mercury. Nusselt numbers are now smaller for the time-dependent regime than for 
the steady solution. Also, if these results were to be compared with experimental 
work, we would observe that the change from one family of solutions to the next 
takes place through a change in the slope of the N versus R curve. Changes in slope 
have been conjectured by some experimentalists as being associated with different 
families of solutions - see for instance Krishnamurti (1973) - and this conjecture 
seems to be consistent with the present results. As in the case of mercury - see figure 
15 - Nusselt number decreases with Rayleigh number for half-cycle solutions, though 
now very slowly. 

6. Conclusions 
The present work has to be understood as a first attempt to explore the physics of 

non-straight structures in the low-Prandtl-number limit, as well as the contribution 
to their dynamics from the vertical vorticity field. We have used a highly truncated 
modal approach with the choice of modes being devised in such a way that they could 
display instabilities associated with the curvature of the primary flow, with a 
minimum of effort. The price paid for this simplicity is the absence of what we have 
called above ' shape instabilities ', with the so-called oscillatory instability being the 
most relevant example of these in low-Prandtl-number fluids. Even if they are 
missing, however, the model reproduces with reasonable accuracy the time 
dependence observed in experiments on mercury. Frequencies and fluxes computed 
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for mildly supercritical Rayleigh numbers are consistent with experiments, mostly 
with experiments concerning containers of intermediate aspect ratio. 

The agreement between our results and some experimental measurements might 
be confusing for we are assuming hexagonal planforms to model some experiments 
which definitely do not show such a geometry. There is, in our opinion, only one 
explanation : system (2.19) includes most of the modal components active in these 
contexts. For instance, in the Appendix we show that such a planform includes some 
signature of roll bending. However, such mathematical reasoning may make some 
readers uneasy. Therefore, we shall discuss a physical model borrowed from vorticity 
dynamics - see Leonard (1985) for a review. Leonard built a bend filament from the 
superposition of two vortices, one being straight and the other toroidal- I>-shaped 
to be precise. They both shared the straight section of the D, with circulations chosen 
so as to cancel there. As a result, some axial flow was forced, with the D-shaped 
component providing all the forcing. 

If these results can be extrapolated to  the present context, we propose that any 
bent roll can be split up into two kinds of modes ~ say Fourier components ~ some 
of them cooperating to build straight rolls, others building toroidal flows. If so, our 
results are consistent with situations where the latter, but not the former, are 
destabilized. If the previous conjecture is added to Jones & hfoore’s (1979) results for 
axisymmetrical convection not showing any oscillatory instability in low-Prandtl- 
number fluids, we get the following picture : if the rolls show some bending, then the 
oscillatory instability can be inhibited, but an axial flow can be destabilized by the 
swirl. This might explain why our results are consistent with experiments for 
convection in mercury but not in liquid helium or air, for the oscillatory instability 
must be present in the latter, but not in the former. However, if convection is 
confined in tall cylinders (Mitchell & Quinn 1966), where the oscillatory instability 
is expected to be inhibited, numerical and experimental results agree even for air 
(Massaguer, Mercader & Blazquez 1987). 

Cross’s (1982) results are encouraging, for he was a,ble to isolate some sources of 
instability as being associated with roll bending. Even if the physics of the instability 
is different, it is relevant, for he found one such source near the boundaries, induced 
by the bending of the roll axis. This could explain why our results show the best 
agreement with convection if the container aspect ratio is intermediate, as can be 
seen from figure 14. If the aspect ratio of the container is large, the agreement is not 
so satisfactory, but there are still some clear signatures of swirl instability, 
suggesting that, besides the geometry, roll bending may be forced by the initial 
conditions or even dynamically forced if some shape instability is active. 

It is also noteworthy that a continuous exchange of kinetic energy between the 
vertical components of vorticity and velocity could result in an enhancement of the 
heat transport, as is the case for mercury. The only reason for this increased 
efficiency comes from the temporal coherence between velocity and temperature, a 
situation that can be understood as a consequence of the large ratio between the two 
time-scales characteristic of the fluid. All variables must enter the fast section of the 
cycle a t  the same time. Thus, rather than any variable choosing its phases more or 
less randomly, i t  must choose them in such a way that its lag is not larger than the 
faster of both time-scales of the cycle. Thus, low-Prandtl-number convection is a 
beautiful example of coherence in both time and space. 

The model that  we have explored is also a promising one as there are some 
signatures of subharmonic bifurcations in regions where experiments give hints of 
chaotic behaviour. These regions in parameter space deserve more work, and we may 
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speculate about how many of these signatures will survive once the model is 
improved with the inclusion of new modes. The answer is not obvious, but we are 
fairly confident, since the solutions found display large amplitudes and a reasonable 
consistency with experimental results. 

During the course of present work we have enjoyed profitable discussions with Drs 
A. Falques, S. Fauve, R. Krishnamurti, F. Marques, J. Toomre, J. E. Wesfreid and 
J. I?. Zahn. Our warmest thanks are due to all of them. Thanks are due also to Dr 
E. Graham whose BODEL code has been used for part of the present computations. 
Criticism from the referees has been of great assistance in improving the manuscript, 
our thanks going to them. The present work has been supported by the Comisidn 
Asesora de Investigacidn Cientifica y TBcnica, Spain. 

Appendix. Two-dimensional flows with swirl 
In  this Appendix we examine the energy sources for instabilities associated with 

a non-zero vertical vorticity component. As a first step, if (2.3) is multiplied by 4 and 
integrated over the whole volume, by using the definition ( 2 . 2 ~ )  and integrating by 
parts, we obtain the balance equation 

CY-' 3, ($21;) + ([Vvp 1') = R(w, T ' )  - CY-'( up - (u. VU)), (A 1 )  

where the angle brackets designate a volume average and the velocity has been split 
up as v = up+ vT, and where up = V x V x (q5k) and vT = V x ($k) are, respectively, 
the poloidal and toroidal components of the velocity field. Also, the volume average 
of (2.4) times $I can written as 

C Y - 1 a , < + + t ( p U T 1 2 )  = - ~ y t +  ( U - v U ) ) .  

q - 1  a,($2) + (lvty) = R ( ~ , T ' )  

(A 2)  

(A 3) 

By adding (A 1 )  and (A 2)  we obtain the well-known energy balance 

where the relationships (vT-uP) = 0 and ( v - ( u . V v ) )  = 0 have been used. 
The splitting of (A 3) into its toroidal and poloidal parts shows the source of 

instability for the toroidal component to be in the right-hand side of (A 2) .  If, for any 
reason, this source term is zero, the solution is attracted towards a uT = 0 field 
and (A 1 )  can be reduced to (A 3) while (A 2 )  becomes identically zero. Moreover, 
uT = 0 identically satisfies (A 2) but not the vorticity equation (2.4),  for then w,  = 0 
is not solution unless 

cop' vv ,  = 0, (A 4) 
where now cop = V x up. What is left is a geometrical condition forcing the flow to 
be invariant along vorticity lines - horizontal by hypothesis. This condition can be 
written more explicity as 

Let us now consider a flow fulfilling condition (A 4). A first source of instabilities 
comes from perturbations violating this condition. We have called them shape 
instabilities - see (2.15) - but these are not the only possible instabilities. The flow 
can be unstable against vertical vorticity even if the perturbations fulfil condition 
(A 4). In  order to examine this type of instability we must realize that an impor- 
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tant set of solutions to (A4)  is two-dimensional, in the sense that 
q5 = $(a, z )  with a =a(x,  y). We shall concentrate on these. 

We are now interested in building a family of two-dimensional flow with prescribed 
geometry. We shall proceed in the following way : given a bundle of horizontal lines 
,8 = p(x ,  y), there always exists an orthogonal system of coordinates (a ,  p, z )  with 
a = a ( x , y ) .  By writing (2.2) in the new coordinate system, and taking ap = 0 
we obtain 

(A 5 )  I up = a,, $ e,- Vi $ k, 
u T =  

up = a, (V2 $) ep, 

O T  = $ vi $ k, 
where e, and ep are the natural vectors along the a- and P-coordinate directions. In  
the case where $ = 0 the flow becomes a vorticity tube - i.e. a roll - along a p-line. 
Straight rolls, axisymmetrical tori and one-hexagon planforms are particular 
examples of these two-dimensional structures which we shall call simply bent-rolls. 

Equation (A 5) indicates that  even with aP = 0 a toroidal component v, can be 
present. This component is called the swirl in vorticity dynamics and constitutes the 
main ingredient of the instability analysed. I n  order to  understand where the energy 
for the swirl comes from we have to  split up the energy source in (A 2) as 

( V T  ' (v '  O n ) )  = (0, * (up' v v p ) )  + (0, * (VT ' v u p ) ) ,  

where the conditions ( u T .  (uT.VuT)) = 0 and (uT~(vp~VuT)) = 0 have been used. 
Now, by using the well-known identity u s  Vu = o x v + i V 2  and integrating by parts 
we obtain 

because u, and o, are parallel - see (A 5). Also 

(UT.(VP'VUP)) = ( U T . O P X  up) = 0 

(uT' (uT' vuP)> = (v$ $ K , 7 ) ,  

with K ,  being the curvature of the p-line if p is the arc length. Therefore, the source 
term in (2.16) can be written explicitly for a two-dimensional flow as 

~1 a,(h;) + ( p u T 1 2 )  = - r - y v ;  a,, $ K ~ ) ,  (A 6)  

showing that, as far as two-dimensional flows are concerned, only those structures 
curved along their longitudinal axis can generate a toroidal component. This 
situation is very similar to  the possibility of axial velocity within the core of curved 
vortex filaments - see Widnall (1975) for a review on the subject. Clearly, the 
existence of an along-roll velocity componenent - i.e. axial flow - is not consistent 
with the condition ap = 0 unless the roll forms a closed loop, otherwise i t  would imply 
a net mass flux in the P-direction. However, we can expect swirl even in open rolls 
if this constraint breaks down near the boundary and a boundary layer with =l= 0 
is formed, as might be the case for flows confined in finite boxes. 
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